Phone-discriminating minimum classification error (p-MCE) training for phonetic recognition

نویسندگان

  • Qian Qian
  • Xiaodong He
  • Li Deng
چکیده

In this paper, we report a study on performance comparisons of discriminative training methods for phone recognition using the TIMIT database. We propose a new method of phonediscriminating minimum classification error (P-MCE), which performs MCE training at the sub-string or phone level instead of at the traditional string level. Aiming at minimizing the phone recognition error rate, P-MCE nevertheless takes advantage of the well-known, efficient training routine derived from the conventional string-based MCE, using specially constructed one-best lists selected from phone lattices. Extensive investigations and comparisons are conducted between the PMCE and other discriminative training methods including maximum mutual information (MMI), minimum phone or word error (MPE/MWE), and the other two MCE methods. The P-MCE outperforms most of experimented approaches on the standard TIMIT database in terms of the continuous phonetic recognition accuracy. P-MCE achieves comparable results with the MPE method which also aims at reducing phone-level recognition errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Margin Gaussian Mixture Modeling for Automatic Speech Recognition

Discriminative training for acoustic models has been widely studied to improve the performance of automatic speech recognition systems. To enhance the generalization ability of discriminatively trained models, a large-margin training framework has recently been proposed. This work investigates large-margin training in detail, integrates the training with more flexible classifier structures such...

متن کامل

Generalization of the minimum classification error (MCE) training based on maximizing generalized posterior probability (GPP)

In this paper, we generalize the training error definitions for minimum classification error (MCE) training and investigate their impact on recognition performance. Starting the conventional MCE method, we discuss with three issues in regard to training error definition, which may affect the recognizer performance and need to be extensively studied. We focus our discussions on the first two asp...

متن کامل

Use of generalized dynamic feature parameters for speech recognition: maximum likelihood and minimum classification error approaches

In this study, a new hidden Markov model that integrates generalized dynamic feature parameters into the model structure is developed and evaluated using maximum-likelihood (ML) and minimum-classification-error (MCE) pattern recognition approaches. In addition to the motivation of direct minimization of error rate, the MCE approach automatically eliminates the necessity of artificial constraint...

متن کامل

Discriminative weighting of multi-resolution sub-band cepstral features for speech recognition

This paper explores possible strategies for the recombination of independent multi-resolution sub-band based recognisers. The multi-resolution approach is based on the premise that additional cues for phonetic discrimination may exist in the spectral correlates of a particular sub-band, but not in another. Weights are derived via discriminative training using the ‘Minimum Classification Error’ ...

متن کامل

Large-margin minimum classification error training: A theoretical risk minimization perspective

Large-margin discriminative training of hidden Markov models has received significant attention recently. A natural and interesting question is whether the existing discriminative training algorithms can be extended directly to embed the concept of margin. In this paper, we give this question an affirmative answer by showing that the sigmoid bias in the conventional minimum classification error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007